Proceedings of 'I'hird International Conference on Artificial Intelligence Planning Systems, 1 id-
inburgh, UK, May 29-31, 1996 Mcnlo Park, CA: AAAL Press.

Static and Completion Analysis for Planning
Knowledge Base Development and Verification

Steve A. Chien
Jet Propulsion Laboratory
California Institute of Technology
cmail: steve. chien @jpl. nasa.gov

Abstract

A key obstacle hampening fielding of Al planning applications is the considerable ex-
pense of developing, verifying, updating, and maintaining the planning knowledge base (K B).
Planning systems must be able to compare favorably in terms of software life.cycle coststo
other mecans of automation such asscripts or rule-basc(i expert systems. Consequently, in
order 10 field real systems, planning practitioners mast be able to provide: 1. toolsto allow
domain experts to create and debug theit own planning knowledge bases; 2. tools for software
verification, validation, and testing; and 3. tools to facilitate updates and maintenance of the
planning knowledge base. This paper describes two types of tools for planning knowledge
base development: static KB analysis techniques to detect certain classes of syntactic errors
in a planning knowledge base; and completion analysis techniques, to interactively debug
the planning knowledge base. We describe these. knowledge development tools and describe
empirical results documenting the usefulness of the.sc tools.

Please address all correspondence to:

Steve A. Chien steve.chien @jpl.nasa.gov
Artificial Intelligence Group Tel. 81 8-306-6144
Jet Propulsion Laboratory Fax: 818-306-6912

California Institute of Technology
4800 Oak Grove Drive, M/S 52.5-3660
Pasadena, CA 91109-8099

ARTIFICIAL INTELLIGENCE GROUP

LC- - Ty
J11 PROPULLSION] .ABORATORY

CALIFORNIA INSTITUTE OF TECHNOI .0G%

Static and Completion Analysis for Planning

Knowledge Base Development and Verification

Slew A. Chicn

JetPropulsion Laboratory, California Institute of ‘Fechnology
4800 oak Grove Diive,M/S 575-3660, Pasadena, CA 9 1109-8099

chicn@aig . jpluasa.gov

Abstract

A key obstacle hamipering fielding of Al planning
applications is the considerable expense of
developing, verifying, updating, and maintaining the
planning kunowledge base (KB). Planning systems
must be able 10 compare favorably in terms of
so ftware lifeeycle costs to other means of automation
such as scripts 01 rule-based expert syste ms.
Counsequently, in order to ficld real systems, planning
practitioner s must be able to provide: 1. tools to allow
domain experts to create and debug their own
planning knowledge bascs; 2. wols for software
verification, valid ation, and testing; anti 3. 100ls 10
facilitate updates and maintenance of the planning
knowledge base. This paper describes two types of
tools forplanning knowledg e base develop ment: static
KB analysis techniques to detect certain classes of
syntactic errors in a planning knowledge base; and
completion analysis techniques, 10 interactively debug
the planning knowledge base. Wc dc.scribe. these
knowledge devel opment tools anti describe empirical
results document ing the usefulness o f these tools.

1. introduction

A majot factor in determining the. feasibility of applying
Al planning techniques to a real-wmld problem is the
amount of e ffort1equired to construct, debug, verify, and
update (maintain) the planning knowl edge base. In
particular, planning systems must be able to compare
favorably in terms of softwar ¢ lifecycle costs to other
means of automation such as scripts or rule-l]ascd expert
systems, An impor tant component to reducing such costs
istoprovide agood eunvironment for developing planning
knowledge bases. Despite this situation, relatively little
cffort has been devoted to developing an integrated set of
tools to facilitate constructing, debugging, verifying, and
updating specialized knowledge structures used by
planning systeins.

This work was performed by the Jet Propulsion Laborator Y,
California Institute of Technology, under contiact with the
National Acronautics antl Space Administration

While considerable rescarch has focused or knowledge
acquisition syste s for rale-based expe risyste ms (Davis
1979), and objcct-oriente d/inheritance knowledge bases
with procedures and micthods ((Iii & Tallis 1995), little
work has focused on knowledge acquisition for specialized
planning representations. Notable exceptions to this
statement arc (deslarding 1994) which vses inductive
learning capabilities and a simulatorto rc.fine planning
operators and (Wang 1995) which uscs expert traces to
lcarn and a simulator to refine planning operators.
However, in many cases a simulation capability is not
available. in these situations the user needs assistance in
causally tracing errors anti debugg ing from a sing le
cxample). This assistance is sorely needed to cunable
domain experts to write anti debug domain theories without
relying on Al people. Furthermore, planning knowledge
base maintenance is often overlooked. Such tools arc aiso
invaluable in tracking smaller bugs, verifying KB
coverage, * and updating the KB as the domain changes.
Whilc these tools can drawmuch from causal tracking
techniques used in ruic-based systems (Davis 1979), there
arc several aspects of planning systems which differentiate
them from ruic-based systems - their specialized
representations anti thedr temporal reasoning capabilities.
‘I$wo specialized representations for planning are prevalent
task reduction rules anti planning opc.raters. These
representations as well as the most common constraints
(ordering and code.si~nation constrains) have evolved so
that specialized reasoning algor ithms must be adapted to
supportdebugging.
Many types of knowledge encoding criers can occur:
incoriectly (icfine(i preconditions, incorrectly defined
cffects, and incorrect variable specifications, Invariably the
end result is a mismatch between the planners model of the
legality of a plan and the model dictated by the domain (o1
domain expert). Thus, the end symiptoms of @ knowledge
base error can be broadly classified into two categories.
Incorrect PlanGeneration: 'This occurs when the planner is
presented @ problem and generates a plan which dots not

I For work in verifying tule-based systems - see (O 'Keefe &
O'l cary 1993). For work on rule base refinement using training
examples (the analogue Oof a simulator for planning KB
refinement) see (Ginsberg C(al. 1988).

achi eve the goals in the curt ent probiem cont ext, In our
expenience, the current problem and faulty solution ¢ an
focus attention in debugging the flaw in the knowledge
base. By using the faulty plan to direct the debugging
process, the user can often focus on the incorreet link in the
plan (faulty protection or achievement) - allowing for rapid
debugging,

Failure o Generate a Plan: This occu s when the planner
is piesented witha solvable problem, but the planner is
unable tO find a solution. In our experience this type of
failure is farmore difficultto debug. This is because the
use 1 does not have a particular plan to use to focus the
debugging process. Thus, often a user would manually
wiite down a valid plan based on their mentalmodel of the
domain, and then trace through the steps Of the plan to
ver ify that the plan could be constiucted.

Because our experience has b een that detecting an d
debugging failure-to generate-a-plan cases has been more
difficult, our work focuses on: 1. verifying that a domain
theory can sowe allsolvable problems; and 2. facilitating
debugging of cases where the domain theory does not
allow solution of a problem decmed solvable by the
domain expert.

This papet describes two types of tools developed |0 assist
in developing planning knowledge bases - static analysis
tools and completion analysis tools. Static analysis tools
analyze the domain knowledge rules and operators 10 scc
if certaingoals can or cannot be inferred. 1LOWCVCI,
because of computational tractability issues, these checks
must be limited. Static analysis tools are useful in
detecting situations in which a faulty knowledge base
causes a top-level goal o1 operator precondition 10 be
unachicvable - frequently duc to omission of an operator
effect or atypographical error. Completion analysis tools
operate at planning time and alow the plannerto complete
plans which can achieve allbut a few focused subgoals or
top-level goas. Completion analysis tools are useful in
cases where afaulty knowledge base dots not alow a plan
to be constructed for a problem that the domain expert
belicves is solvable. in the case where the completion
analysis tool allows a plan 10 be formed by assuming goals
true, the domain expert can then be focused on these. goals
as preventing the plan from being generated.

The static analysis and completion analysis tools have been
developed inresponse 10 our experiences indeveloping and
refining the knowledge base for the Multimission VICAR
Planner (MVP) (Chien 1994a, 1994b) system, which
automatically generates VICAR image processing scripts
from specifications of image processing goals. The MVP
system was initially used in December 1993, and has been
in rowtincuse since. May 1994. The tools described in this
paperwete driven by ourconsiderable effor 1s in knowledge
base development, debugging, and updates to the modest
sized knowledge base for MVP.

Thie remainder of this paper is organized as follows.
Scetion 2 outlines the two planning representations WC
support: (ask reduction rules and operators. Section 2 also
briefly describes how these representations are used in

planning. Section 3 describes static analysis rules for .
assisting in planning KB verification and development. -
Section 4 describes completion analysis rules forassisting,
in planning KB development.

2. VICAR Image Processing

W c describe the static and completion analysis tools within
the conte xt of the Multimission VICAR Plannct system, a
ficlded Al planning system which automates certain types
of image processing?. MVP uscs both task reduction and
operator-based methiods in planning. 1lowevet, the two
paradigins arc separate, inthat MV fust performs task
reduction (also called hicrarchical task network 01- HTN
planning) and then performs operator-based planning. all
of the task reduction occurs at the higher conceptual level
and the operator-based methods a the lower level .’
Consequently, MVP uses two main types of knowledge to
construct image processing plans (scripts):

I. decomposition rules - to specify how problems are to be
decomposed into lower level subproblems; and

?. operators - to specily how VICAR programs can be used
to achieve lower levelimage processing goals (produced
by | above). These also specify how VICAR programs
interact.

‘These two types of knowledge structures are described in
furtherdetail below.

2.1 Task Reduction Planning in MVP

MVP uses atask reduction appt oach (1.ansky 1993) to
planning. In a task reduction approach, reduction roles
dictate how in plan-space planning, oneplancanbe lc.gaily
transformed into another plan. The planner then searches
the plan space defilled by these reductions. Syntactically, a
task reduction rule is of the form:

11ls RHS
Gy =initia goal set/aclions GR= reduced goal set/actions
C = conslraints = > C 1 = constraints
C2 = context N = notes on decomposition
This rule stales that aset of goals oractions GG} can be
reduced 10 a ncw sct of goals or actions Gy if the set of
constraints Cg is satisfied in the cutientplan and the
context Cy is satisfied in the current plan provided the
additional constraints Cy arc added 10 the plan. Gy and C
ate congtraint forms which specify conjuncts of constraints,
cacl | of which may be a codesignation constraint on

2we only briefly describe the M VP application due to space
consts awnts, For further information on this application area,
MVP aichitexture, and knowledge representation see (Chien
1994a.b).

3 MVP first uses task reduction (Lansky 1993) planning
techniques to perform high level strateg ic classification and
decoposition of the problem then usCs traditional operator-based
(Pemberthy & Weld 1992) planning paradigms toplanat the

lower level..

.

variables app sating in the plan, an ordering constraint on
actions or goal achievements in the plan, a not-present
constraint (which is satisficd only if the activity or goal
specified does not appear in the plan and never appeared in
the derivation of the plam), w present constraint (which is
satisfied only if the activity o1 goal specified did appear in
the plan or derivation of (he plan), or a protection
constraint (which specilies that a goal or set of gouls
cannot be invalidated during a specified temporal interval,

Skeletal planning(Iwasaki & Fried)and 1985} is a technique
in which a problem is identified as one of a general class of
problem. This classification |

1s then used to choose a
particalar solution method. Skeletal planning in MVP i
implemented in by encoding decomposition rules which
allow for classification and initial decomposition of a set of
goals corresponding to a VICAR problem class. The 1.HS
ol a skeletal decomposition rule in MVP cotresponds to a
setof conditions specifying o problem class, and the RHS
spectties an initial problem decomposition for that problem
class. For example, the following rule represents a
decomposition for the problem class mosaicking with
absolute navigation.

LIS RHS
G mosaicking goal present G =
Co null

Co= aninitial classification

1. local correction,
2. navigation
3. registration
has not yet been made 4. mosaicking
5. touch-ups
C1 = these subtasks be
performed in order
1.2.3.4.5.
proteet local correction
goals until mosaicking
N = problem class is
mosaicking
stmplified decomposition rule states that if
mosaicking is a goal of the problem and an initial problem
decomposition has not yet been madc, then the initial
problem decomposition should be into the subproblems
local correction, navigation, etc. and that these steps must
be petformed in a certain order. This decomposition also
specifies that the local correction goals must be protected
during the navigation and registiation processes.
MVP also uses decomposition rules to implement
hicrarchical planning. Hicrarchical planning (Stefik 1981)
is an approach to planning where abstract goals o1
procedures are incrementally refined into more and more
specific: goals or procedures as dictated by goal o
procedure decompositions. MVP uses this approach of
hicrarchical decomposition to 1efine the initial skeletal plan
into a more specific plan specialized based on the specific
current goals and situation. This allows the overall problem
decomposition to be influcnced by factors such as the
presence or absence of cettain image calibration files of the
type of instrument and spacecraft used (o record the mage.
For example, geomeltric correction uses a model of the
target object 0 correct for variable distance from the
instrument to the target. For VOYAGER images,

geometnic conection is performed as part of the local
correction process, as geometrjc distortion is significant
cnough to require immediate correctjon before other image
processing steps can be performed. However, for
GALILEO images, gecometric cortection is postponed until
the registtation step, where it can be performed more
ethiciently.

This decomposition-based approach to skeletal and
hicrarchical planning in MVP has several strengths, First,
the decomposition rules very naturally represent the
mannet o which the analysts attack” the procedurc
generation problem, Thus, it was g relatively
stratghtforward process for the analysts to atticulate and
accept classification and decomposition rules for the
subarcas which we have implemented thus far. Sccond, the
notes from the decomposition rules used to decompose the
problem can be used to annotate the tesulting plan to make
the output plans more understandable (o the analysts.
Third, relutively few problem decomposition rules are
sasily able 10 cover a wide tange of problems and
decompose them into much smaller subproblems.

2.2 Operator-hased Planning in MV

MVP 1cpresents lower level procedural information in
terms of classical planning operators. These are typical
classical planning operators with preconditions, effects,
conditional effects, universal and cexistential quantification
allowed, and with codesignation constiaints allowed to
appear in operator preconditions and effect conditional
preconditions. For reasons of space constraints the
operator representation is only briefly described here. (for a
good desctiption of a classical planning operator
representation shmilar to ours sce (Penberthy & Weld
1992)). Thus, an operator has a list of paramncter variables,
a conjunctive set of preconditions, and for cach cffect

(which is a conjunct) there is a (possibly null) set of

preconditions.

Operator Paramcters variable*

Preconditions: Prec = Prop*

Effects: [Bffect; = Prop* when Cprecj = Prop*]t

The above operator has the semantics that it can only be
executed in a state in which all of the preconditions Prec
ate true. And when exccuted, for cach effect set, if all of
the conditional preconditions Cpreej are trae in the input
state, the effect Effectj occurs and all of the effects are true
in the output state,
A description of the GALSOS operator is shown belov
operator GAL.SOS
‘parameters ?infile 2ubwe 2cale
preconditions
the project of ?infile must be galileo
the data in ?infile must be raw data values
effects
reseaus are not intact for ?infile
the datacin ?infile is not raw data values
missing lines are not filled in for Zinfile
Yinfile is radiometrically corrected

the image format for ?infile is halfword
Yinfile has blemishes-removed
i (UBWC option is selected)

then ?infile s uneven bit weight corrected
if (CALCoptionissclected)

then ?infile has entropy values caleulated

2.3 Different Tool Types and Representations

In order 10 facilitate this key process of knowledge
acquisition and refinement we have been developing aSC
of’ knowledge- base editing and analysis tools. These tools
can be categorized into two general types: (1) static
knowled ge base analysis tools;and (2) completion
analysis tools. Because MVP uscs two types of
knowledge:decomposition rules and operator definitions,
cach of these tools can be used with each of thesce
representations, Thus there are four types of tools:

I. staticrule analysis tools;

2. slaticoperator analysis tools;
3.completiontule analysis 100is; and
4. completionrule analysis tool's.

For each type of tool, itis possible to per form the analysis
using propositional ot full predicate checking. In
propositional analysis, all actions ancl goals are considered
oplimistically only for the predicate or goal name. For
example, when considering whether an operator could
achieve aspecific fact, "(radiometrical ly-corniected ?ilel)”,
optimistic treatment means that any effect or initial state
fact with the predicate "radiometrically-cortected" can be
used. w h e n considering whether an ¢ ffecl
"(radiometri cally-corrected ?file 1), deletes a protected
fad "(radiometri cally-corrected ? file2)”, one presumes that
the argumen ts to the predicate can be resolved such that the
conflict dots notoccur. Therefore the ¢ ffect is not
considered 10 delete the fact. The propositional analysis s
used as a fast checking component 10 catchsimpleeriors
when debugging a knowledge base. The full static analysis
is useful butrestrictedto mom balcl~-like analysis ducto
it's computational expense.

3. Static Analysis Tools

3.1 Static Analysis Tools for Task Reduction Rules

Static analysis loots analyzc the knowledge base to
determine if pre-specified problem-classes are solvable,
The static analysis techniques canbe used in Iwo ways: 1.
fastrun-time checking using propositional analysis (called
propositional static rule analysis); and 2, of f-line
knowledge-base analysis to verify domaincoverage (caled
full staticrule analysis),

I n our knowledge base development and refinement

framework, the knowledge base is divided into a sctof

problem spaces.

A problem space consists Of asct of allowable sc(sof” input
goals or high level tasks and a set of operational goals,
facts, or lower-level tasks. in the case of static rule

analysis, the analysis process is toverify that al le galsets.
of input goals can be reduced into operational
goals/facts/tasks. The set of allowable input goals is
formally specified in terms of logical constiaints on a set of
goals produced by the interface. For example, below we
show a simplificd problem space description for the
navigation problemspace.

These problem spaces represent a set of contexts in which
the decomposition planner otoperator planner is
attepting to solve. a general class of problems.
Decomposing the overall problem solving process into
thiese problem spaces and analyzing cach in isolation
dramatically reduces the complexity of the analysis
process. Of course, this inttoduces the possibility that the
knowledge base analysis is flawed duc to a poor problem
decomposition, Unfortunately, we know of no other way
around this problem.

Input goals are all combinations of:
(attempt-to- FARENC iles)
(automatch ?files)
(manmatch ?Miles)
(corve-verily ?files)
(display-automatch-residual-erior?files)
(display-manmatch-residual-error # files)
(update-archival-sedr ?files)

subject tothe constraint that:

~((attempt-to-FFARENC ?files files) and
(automatch Miles))
~(cur ve-verify ?Miles) or (attempt-to-FARENC ?files)
~(display-automatch-residual-croon ?files) o
(automatch ? files)
~(display-manmatch-residual-error ?files) o)
(manmaltch Miles)

Generally, the allowable sets of input goals arc. of the. form
“al combinations of these 5 goals except that goald and
goal3 arc incompatible, and that every time goal 2 is
selected goal 1 must have this parametet ...

The output legal set of goals/facts/tasks arc defined in
terms of a sct of operational predicates. For example, in
the relative navigation example uscd above has the
following operational predicates.

construct-om-matrix
display-om-ciror

Operational Predicates:

This means that any goal/activity/fact produced using one
of these predicates is considered achicved. Static rule
analysis runs thetules onthese allowable combinations and
verifies that the decomposition ryles cover the
Corn binations (this corresponds 10 exhaustive testing of the
task reduction rules). As described in Section 2.1, there arc
several types Of constraints used in the task reduction rules,
Some of these constraints do not make sense for a

propositional analysis, how constraints arc handled in the
propositional anaysis is shownbelow.

Constraint type Propositional Case lull Case

codesignation ignored tracked
not-present ignored tracked
present propositional tracked
ordering tracked tracked
protection ignored tracked

StaticRuleAnalyze(input- goals, operational-goals, rules)
inititalize Q = ((goals= imput-goals , constraints: {))]
select a planP from o
for cach plan P produced by red ucing a goal in P using a
task reduction rie w. constraints as below
1P contains only operational goals return SUCCESS
ELSE add P to QQ and continue

The principal difference betweenthe propositional and
non-propositional cases i s that when predicates arc
transformed 10 the propositional case, constraint resolution
optimistically presumes variable assign ments will remove
conflicts. For example, consider the plan andreduction
rules shownbelow.

Planl: activities: (foo ¢210) (bar ¢216)
constraints;
Plan2: activities: (fooc216) (barc211)

constraints:

ReductionRule 1:

if present: (bar 2a)

not-present: (foo ?b)

Reduction Rule?:

if present: (bar 7a) (foo ?a)
In the propositional case, both rulel and rule2 apply to
both plan]l and plan2. In the full case, rule 1 dots not
apply cither planlor plan2. In the full case rule2 applies to
planl but riots not apply to plan2. Note that in the
propositional case, in order to presume that variables
resolve optimistically, the analysis procedure need not
compute all possible bindings. Rather, the analysis
procedure resolves present constraints by presuming
matching if the predicate malches and by ignoring not-
present constraints (and others asindicated above)).
To further illustrate, consider the following example from
the MVP domain. ‘The mput goals, relevant decomposition
rules, and opcrational predicates arc shown below.

Input Goals: (automate h ?files) (manmatch ? files)
(display-manmatch-error '! files)

Decomposition Rules:

Rulel ©L.HS (automatch (1) (manmatch ?f1)

RHS (constt uct-om-matiex {1 auto-man-refined)
Rule? LHS (display-manmatch-error 7 {2)

present (automatch ?12) (manmatch ?2)

RHS (display-om-crror 72 auto man-refined)

Opcrational Predicates: constract-om matr ix, display-om-
clor

in both the propositional and full static rule analysis cases
both rules would apply in the analysis. 1’11115, both analyses
would indicate that the input goals can be reduced into
operational lauls/activities.

3.2 Static Analysis Tools for Operator-hased
Planning

‘The static analysis techniques can also be applied to the
MVP's operatot-based plannct component. This is
accomplished by gencralizing the planning algorith m.
Again, as with the static rule analysis, the static opetator
analysis is considering a gene talclass of problems defilled
by aproblem space. As with the static rule analysis, a
problem space defines an allow able set of goals and a sct
of operational predicates which arc assumed true in the
initia state.

Inthe propositional static operator analysis case, in order 10
treat the domain theory optimistically, we must assume that
al protection interactions can be resolved by variable
assignments. Because of the absence of protection
constrains, the propositional operator slatic analy sis
cotresponds 1o the propositional rale-based static analysis.
An oper ator with preconditions P and effects EE maps onto a
rulewith 1,11S 1" and RHS |, Conditional effect extend
analogously.

‘The non-propositional static analysis case is handled by
modifying a standard operator-based planner. The plannci
is changed by adding an achievement operation
corresponding to presuming any operational fact is true in
the initial state. We are currently investigating using more
sophisticated static analysis techniques to detec tmmote
subtle cases where goals arc. unachievable [Etzioni 1993,
Ryu & Irani, 1992]. The full (c.g. non-propositional)
operator static analysis algorithm is shown below.

StaticOperatot Anal yzeliull(input, operational, operators)
tnitialize plan quecuc Q to { (goals:=input, constraints= {)))
select a plan 1’ fromQ
forcachplan |I* produced by achieving a goal Gusing
the following methods:
1. usc an existing operator in the plan to achicve G
2. add a new operator to the plan to achieve G
32 if the goal is operation al assumic it true in the
initial state
resolve conflicts in ¢ (protections)
1P hasno unresolved conflicts and nounachicved
goals
THEN return SUCCESS
ELSE add 1" to Q and continue

Figure 3 shows the subgoal tree generated by petforming,
full static analysis on the operator plannet problem space
Shown below.

\mnpu\x«ugmu o Neun bl ¥ PR

OMCOER2

"m.,

/
‘_ﬂ HMA {H

M s - £k It moxa 1k by Lo,

!
GLL CAMrA Y

Tefum nmmq 1L unmm- Al

vm‘j(ul
180 ll!l
ke u\ul.ppm»
MOSFHLO S :un tul be g rde

i l!vllun o

_IBIG l(Ak\

ploject

\ / mosth -8 be-hy
;"“ "'”""I'“"l“’ stte T CO 1S RU CTMOS ATCE IE LI
o111 et
) SHADOWL D + opeuts
profeci pderdoud . top duvel god
oparet s . N A staty sulefind ool
fwaton pracoodb oo St u, afta.t
i ea-aw-lm upmal:pw onxcHE T L0 Op Bnalims b oftixts
prariifion
Figure 3: Subgoal Graph indicating Static Operator

AnaIyS|S for Navigation Goals.

Input Goals: (compute-om-matrix ?fl manmatch)
(update-archi val-sedi 21 manmatch)

Operational Predicates: project, initial-predict-source

4. Completion Analysis Tools

The second type of knowledge base development tool used
in MVP is the completion analysis tool. In many cases, a
knowledge engincer Will constructa domain specification
for aparticular VICAR problem, testitout on known files
and goal combinations. T'wo possible outcomes Will occur.
First, it is possible that the domain spectfication will
produce an invalid solution. Second, it is possible that the
planner will be unable to construct a solution for a problem
that the expert belicves is solvable.

in the case thatthe planner constructs an invalid solution,
the knowledge engincer can use the inconsistent part of the
solution toindic ate the flawed portion of the domain
theory. 'or example, suppose that the planner produces a
plan consisting of steps ABCD,but the expert believes
that the correct plan consists of steps ABCSD. In this casc
the knowledge enginect can focus on the under lying, reason
that S is necessary. S musthave had some purpose in the
plan. It may be needed to achieve a lop-level goal G or a
precondition 1 of A, B, o1 C. Alternatively, if the ordering
of operators or variable assign ments iS not valid in the
produced plan, the knowledge engine.cr can focus on the
protection or other constraint which should havebeen
cnforeed.

The second possibility is that the domain specification fails
to allow the desired solution. For example, the expert
believes that the plan ABCD should achieve the goals, but
the planner fails to find any plan to achieve the goals. In
this case, detecting the flawed part of the knowledge base

is more difficult, because it is dif(icult to determine which
pattof the domain specification caused the desired output .
plan 1o fail. In manually debugging these tvpes of
problems, the knowledge engineer would write out by hand
the plan that should be constructed. The knowledge
engineet would then construct a setofproblems, cachof
which corresponded 10 a subpart of the failed complete
pt oblem. For example, if a I'ailed problem consisted of
achieving goals A, B, and C, the knowledge engineer might
try the planneron A aone, Balone, and C aone, to attempt

to isolate the bug to the portion of the knowledge base

contesponding to A, B, o1 C, correspondingly.

Completion analysis tools partially automate this tedious

process of 1solating the bug by constructing subproblems.

The completion analysis tools alow the decomposition or

opetator-based plannerd o constiuct a proof with
assumptions that a smallnumberof goals Or subg oals can

bie presumed achievable (typically only onc or two)$. By

sceing which goals if assumable, make the problem

solvable, the user gains valuable information about where

the bug lies in the knowledge base, Forexample,if a
problem consists of goals A, B, and C, and the problem
becomes solvable if B is assuined achievable, the bug is
likely tobeintheportion of the knowledge base refating to
the achievement of B. Allcnmtivcl), if the problem is
solvable when cither Bor (is assumed achievable, then
the bug likely lies in the interaction of the opeiators
achicving Band C. The completion analysis tool is used

by running the modified plannet algorittununtil either: 1. a
resoutce bound of the number of plans expanded is
reached; or 2. there are no more plans to expa nd. The

complction analysis algorithi for the reduction planner is
shown below.

Completio nReduction Plannet (input, operational, rules)
initialize Q = {(goals= input, constraints:= (},
assumptions=0)}
1¥ rt’ source bound return SOI ,LJ 1'10NS
ELSE select a plan P from Q
for cach plan P' produced by reducing 1' using atask
reductiontule
[1'the constraints in P'are consistent
1IF 1 contains only operation goals/activities
‘I'11ENadd 1“ 10 SO! [T 1'IONS
fil.Stiadd 1“ to Q and continuc
ELSE discard }*
forcach plan 1* produced by presuming the currentgoal

415 the completionanalysis for both the reduction planner and the
operator-based planner thete arc choice pointsinthe scale’h in
ordeting plans in the search quene. In both cases, we use standard
heuristics based on the numbetr of outstanding goals and plan
detivation steps so far. | lowever, the static analysis technigues
would work with any appropriate heuristic for this search choice.
Sthe number of goals assumable IS kept small because allowing
theplannerto assume goals dramatically increases the search
space for possible pla ns. Iteffectively adds 1 to the branching
factor of every goal achievement node in the scarch space for the
plan

achieved/operational
1 P contains only operation goals/activities
THEN add P to SOLUTIONS
ELSE increment NumberOfAssumptions(P)
11 NumberOfAssumptions(P') <= bound
THEN add P to Q

expanded is reached; or 2. there are no more plans o
expand. All solutions found are then reported back to the
user to assist in focusing on possible arcas of the domain
theory for refincment. The basic completion analysis
algorithm for the operator planner is shown below.

CompletionOperatorPlanner(input, initial-state, operators)
inttialize Q = {(goals: input, constraints: {},
assumptions: 0)}
I resource bound exceeded
THEN return SOLUTIONS
ELSE select a plan P from Q
for cach plan P produced by achieving a goal using
the following methods:
. use existing operator in the plan to achicve the goal
add a new operator 1o the plan to achieve the goal
. use the initial state to achieve the goal
A i the number of goals already assumed in P s
less than the bound assume the goal true using
completion analysis; the number of assumptions in
the new plan is 1 more than the number in P resolve
conflicts in 1" (protections)
11 P' has no unresolved conflicts and has no
unachieved goals
THEN add P' to SOLUTIONS
ELSE add P' to Q and continuc

v —

W

I'ic main drawback of the completion analysis tools is that
they dramatically increase the size of the scarch space.
Thus, with the completion analysis tools, we provide the
uscr with the option of restricting the types of goals that
can be presumed true. Currently the user can restiict this
process in the following ways:

1. allow only top-level (problem input) goals to be
assumed;

2. allow only goals appearing in a specilic operators
preconditions to be assumed,

3. allow goal relating to an operator (appearing in its
precondition or effects) to be assuined; and

4. only allow certain predicates to be assuined.

Thus far, we have found these restriction methods to be
faitly effective in focusing the search.

Note that allowing certain goals to be presumed true
corresponds to editing the problem definition (or domain

theory) numerous times and re-running the planner. For
example, allowing a single top-level goal to be assumed
true for a problem with N goals corresponds to editing the
problem definition n times, cach time removing one of the
top-level goals and re-running the planner cach time.
Allowing a precondition of an operator to be suspended
corresponds o running the planner on the original problem
multiple times, cach time with a domain theory that has
one of the operator preconditions removed. Manually
performing this testing to isolate an ctror quickly grows
tircsome. Furthermore, if mudtiple goals are allowed to be
suspended, the number of edits and runs grows
combinatorially. The completion analysis tools are
designed to alleviate this tedious process and to allow the
user to focus on repaiting the domain theory. As a side
cffect, running the planner only once is also
computationally more efficient than running the plannet
multiple times. This is because the planner need explore
portions of the scarch space unrelated to the suspended
conditions fewer times.

Thus, the completion analysis techniques are gencerally
used in the following manner. MVP automatically logs
any problems unsolvable by the task reduction planner
(unreducable) or operator-based planner (no plan found).
The user then specifies that one of the top-level goals may
be suspended (any one of the top-level goals is a valid
candidate - the planner tries cach in tuin. The completion
planner then finds a plan which solves all but one of the
top-level goals - focusing the user on the top-level goal
which is unachicvable. The user then determines which
opetator O1 that should be achieving the goal, and
specifies that the completion planuer may considet
suspending preconditions of O1. The completion analysis
planner runs and determines which precondition Pl of Ol
is preventing application of this operator. Next, the user
determines which operator O2 should be achicving this
precondition P1 of OI, and the process continues
recursively until the flawed operator is found. For
example, it may be that a protection cannot be enforced,
thus preventing a precondition P from being achicved. In
this case, suppose another operator 02 should be able o
achicve P1. But suspending its preconditions does not
allow the problem to be solved. This might hint to the
knowledge engineer that the problem is in the protection of
Pl from 02 to Ol. Alternatively, it may be that no
operator has an effect that can achieve P (perhaps the
knowledge engincer forgot to define the effect or operator).
Or that the effect has a different number of arguments, or
arguments in a different order, or arguments of a different
type. These types of bugs can be casily detected once the
bug has been isolated to the particular operator. Anothier
possibility is that a conditional effect that should be used
hias the wrong conditional preconditions. Again, once the
bug has been traced to a particular operator, the debugging
process is greatly simplified.

In order to further explain how the completion analysis
tools are vsed, we now describe a detailed example of how
the completion analysis tools are used. The graph below in

Fagure 4 illustrates this p rocess from an actual debugging
episode which occutred in the development of @ portion of
the planning knowledge base” relating to aproblem caled
relativenavigation 7 Bach of the following steps in the
debugging process is labeled P if the planner per formed the
step; U if" the user/knowledge engincer per forms the step;
ot Cif the completion analysis tool per forms the step.

1. (I') 'The planner isunable to solve the original problem.
2. () The user initiates the debugging process by invoking
the operator-based completion analysis tool specifying that
one t0])-level goal may be suspended.

3.(C) The completion planner constructs a plan achieving
all 01 the goalsbutthe tg)-level goal of (compute-om-
matrix Jom-matrix ? file-list ?hle-hsy).

} wamperet by oy ol -
2 wingrarnt OMCO RS pro cosbhrin o nple Ot gatria e ppedate an vl SEDR
3 sungornd MAN MATCH procusiicess .

4 auspead EOIBIS precansivum —

5 suspeid MOSPLOT . peondins

F o kB g

QL LCAMFAK

project
Gfanih nay
J6 IGHAV:
T it
initial predid soune “SwlCONS TRUCT MOS AIC FIL B L1S1
7
Wy et
projes SHADOWED = opembe
odred - top el god
o pe ror £i% - rihd slko ke o1 o et xs
naonal parab pmcrnlibon satnbed by @t

v . op
bes mre chawt bun oparal f pre ora il ons Woops el vs G a8 ts
CL Lt (%]

Figure 4: ‘T'race of Interactive Debugging Process using
Completion Analysis Tools

4. (U) The user then determines that the OMCOR?
operator should have been able. to achieve the goal
(compute- om-matrix ?om-matrix ?file-list *? file-list). The
user then continues the debugging process by invoking the
completion analysis tool specifying that a precondition of
the OMCOR?2 operator may be suspended.

S. (C) inresponse 10 the user request, the completion
planner finds a plan achicving a] goals cxcept the
OMCOR? precondition (ticpoirrl-file 2tp ile-list
manmatch).

6. (U) The. user then determines that the precondition
(ticpoinl-file ?tp ?Hile-list manmatch) should be achieved

ONote that this is the same portion of the knowledge baseusedto
generate the VICAR code fragmentshown in the introduction.
This is also the. operator portion of the knowledge base relating,
directly 10 the task reduction rules shown in the example for static
rule anaysis.

7 For the interested reader, navigation of the image iS the process
of determining the appropriate transformation matrix to map cach
pixel from the 2-ditmensional (line, sample) of the image space to
a 3-dimensional (x,y,z) of some coordinate object space (usualy
based on the planet center of the target being imaged). Relative
navigation correspoi ads to the process when determining the
im solute position Of each point is difficult tocomputeso that the
process focusses 011 determining the correct positions Of each
point relative to other points in related images.

by the MA NM ATCH operator, and invokes the operator
completion analysis tool allowing suspension of onc of the .
preconditions of the MANMATCH operator.

7. (C) 'The completion planner then finds aplan achieving
all goals but the precondition (refined-overlap-pairs ?rop-
file 7 file-list) of the operatot MANMATCH.

8. (U) The user then determines that the precoundition
(refined-over lap-pairs ?rop-file ? file-list) should have been
achieved hy the EDIBIS opetator and invokes the operatot
completion analysis tool allowing suspension of an
EDIBIS precondition.

9. (C) The completion planner finds @ plan achicving all
goals but the precondition (crude-ovetlap-pair ?eop-file
ile-list) of EDIBIS.

10. (U) The user then determines that this precondition
(crude-overlap-pait - ?co p-file ? file-1ist) should have been
achic ved by the MOSPLOT-construct-crude-nav -file,
This results N another invocation of the completion
analysis toolallowing suspension of a precondition for
MOSPLOT-constiuct-crude-nav-file,

I 1. (C) The completion analysis tool then finds a plan
achicev ing all goals but the precondition (Tatlon 2mf ?lat
?lon) for the operator MOSPLOT-constiuct-crude-nav-file.
12. (U) At this point, the user notices that the constructed
plan for achicving the goals has assumed the instantiated
goal (latlon &middle-file ?lat ?on). This immediately
indicates the error to the uscl because the user is expecting
afile name as the second argument of the latlon predicate. 8
Unfortunately, we have as of yet not been able to
determine any heutistics for controlling the use of these
completion tools that allows for more globalscarch or
allows for less user interaction.. However, in their current
form, the completion analysis tools have proved quite
useful in debugging the MVP radiometiic correction and
color triplet rc.construction knowledge base.

4.3 Impact of Debugging

Inorderto quantify the usefulness of the completion
analysis (ools, wc collected data fromal week phase of
domain theory development for the relative navigation
portion of the domain theory. During this week, we
identified 22 issues raised by a domain expert analyst
which atfirstguess appeared to be primarily in the
decomposition rules or operators. For | 1 of these 22
problems (selected randomly) we used the debugging tools
in refining the domain theory. Foruthe other 11 problems

8 This iS becausethielatlon goa IS designed 10 referto a specific
image file (e.g., 1126.IMG). Correspondingly, the planning
operators that bad been defined to acquire information such as
latlon presumed actual file names. Unfortunately, &middie-file
refers to a VIC AR variable which will be bound to anactualfile
name only a the time that the VICAR script is run (i.e. whenthe
plan is executed). Thus, the bug lies in the mismatch between this
precondition and the operators which can determine latlon
information for a file. This bug was thenfixed by defining
operators which could utilize the VICAR variable in formation at
runtime and perform the correct steps [0 compute the needed
latlon information.

we did notuse the debugging tools. wie tools wer e
allowed, we estimated that the tools were applicable in 7
outof the | LI}rot~lcills. pyiese problems weresolved in
an average of 10 minutes cachyr. Theotherd 10o0k” on
average 41 minutes. The total 11 probl ems where the tools
were used took on average ? | minutes cachito correct. 111
the 11 problems solved without usc of the 100 Is, aftet
fixing al 11 problems, we estimated that in 6 out of thel |

problems that the debugging tools would have helped.
These 6 problems 100k on average 43 minutes cach to
solve, The remaining S problems ook on average 40
minutesto solve. The sc.toad sct of 1 Iproblemstook on
averag e 42 minutesto solv c.

Set Tools Ave ‘1'001s Ave
App. Time Not App. Time

0 (1 11 10 min, 471 | 41 min. 21 min.

No Tool 6/1 1 43 min. 5/1 | 40 min. 42 min.

Overdl Ave

5. Discussion

One area for future wor k is developnicent of explanation
facilities 10 alow theuser 10 introspectinto the planning
process. Such a capability would allow theuser 10 ask
suchquestions as "Why was this operator added [0 the
plan?" and "Why 1 s this operator ordeted after this
operator?”, which canbe answered easily from the plan
dependency structure. More difficult (trot also very useful)
questions are of the form “Why wasn't operator 02 used (o
achiceve this goal?" o1 " Why wasn't this problem classified
asproblem class P?". We arc currently investigating using
completion analysis tools to answer thistype of question.
The completion analysis techniques arc 1elated to theory
refinement technigues from machine learning (Ourston &
Mooney 1994, Giusberg ctal. 1988). However, these.
techniques presume multiple examples over which to
induce crrors. Additionally, reasoning about planning
operators reguires reasoning about the specialized planning
knowledge representations and constraints.

This paper has desciribed two classes of knowledge base
development tools. Static analysis tools allow for efficient
detection of certain classes of unachievable. goalsand can
quickly focus user attention on the unachievable goals,
Static analysis techniques can also be used 10 verify that
domain coverage IS achicved. Completion analysis tools
allow the user to quickly focus ouwhich goals (or
subgoals) are preventing the planner from achieving a goa
set belicved achievable by lilt knowledge base developer.
These tools are curtently in usc and wec have presented
cmipirical evidence documenting the usefulness of these
tools in constructing, maintatning, and verifying the MVP
planning knowledge basc.

References

(Chien, 19944) S. Chicn, "Using Al Planning Techniques
to Automatically Generate Image Processing Procedures: A

Preliminary Report ”
1994, pp. 219-224.
(Chicn, 1994b) S. Chicn, A uwtomated Synthesis o f
Complex Image Processing Procedures for a i .arge-scale
Image Database,” Proc. First IEEE Int. Conf. on Image
Processing, Austin, 'TX, Nov 1994, Vol 3, pp. 796 -8(X).
(Davis, 1979) Interactive Transfer of Expertice:
Acquisition of Ncw Inference Rules, Artificial Intelligence
1'2(2)1979,.pn. 12.1-157.

(DesJarding, “1994), "Knowledge Development Methods
for Planming Systems,” Working Notes of the AAAI Fall
Symposium on Learning and Planning: On 10 Real
Applications,” New Orleans, LA, Nov 1994, pp. 34 40.
(Ltzioni, 1993) (). Etzioni, "Acquiring Scarch Control
Knowledge via Static Analysis, " Artificial Intelligence, 62
(2) 255-302, 1993,

((ii & Tallis 1995) Y. Gil and M. Tallis, “Transaction-
based Knowledge Acquisition: Complex Modifications
Made Fasiet,” Proc. of the Ninth Knowledge Acquisition
for Knowledge-based Syste ins Workshaop, i 995.
(Ginsberg et @ 1988) A. Ginsberg and S. M. Weiss and .
Politakis, "Automatic Knowledge Based Refinement for
Classification Systems”, Artificial Intelligence, 35 pp. 197-
226, 1988.

(Iwasaki and Friedland, 1985) Y. Iwasaki and 1). Friedland,
“The Concept and lmplementation of Skel etal Plans, '
Automated Reasoning 1, i (1985),pp.i 6i -208.
(I.ansky,1993) A. lLansky, "l.ocalized Planning with
Diverse Plan Construction Methods, " TR FIA.93. 17,
NASA Ames Rescarch Center, June 1993.

(i aVoicetal.1989) S. L.aVoice, D. Alexander, C. Avis, H.
Mortensen, C. Stanley, and 1.. Wainio, VICAR User's
Guide, Version 2, JPL Internal Doc.1>-4186, Jet Propulsion
Laboratory, California Inst. of Tech., Pasadena, CA, 1989,
(O'Keefe & O'leary 1993) R. O'Kceele and). O'Leary,
"Expert System Verilication and Validation: A Sur vey and
Tutorial,” Al Review, 7:3-42, 1993,
(Mooney & Ourston 1994) Mooney, R.J. and Ourston, D,
“A Multistrategy Approach to Theoty Refinement,” in
Machine Learning: A Multistrategy Approach, vol. 1V,
1{. s. Michalski & G. Teccuci (eds.), pp.141-- 164, Morgan
Kaufman, San Mateo,CA, 1994,

(Pemberthy & Weld, 1992) J. S. Pemberthy and D, S.
Weld, "UCPOP: A Sound Complete, Partial Order Planner
for ADL," Proc. of the Third Int. Conf. on Knowledge
Representation and Reasoning, October 1992, pp. 103- 1 14,
(Ryu & Irani, 1992) K. Ryu & K. Irani,"l.carning from
Goal Interactions in Planning: Goal Stack Analysis and
Generalization,” Proc AAA192, pp. 401-407.

(Stefik, 1981) M. Stefik, “Planni ng with Constraints
(MOL.GEN: Part i),” Artificiallutelligence 16, 2(19S 1),
pp-ii1-140.

(Wang, 199S) X.Wang, “l.carning by obscrvation anti
practice: An incremental approach for planning operator
acquisition,” in Proc. M1.92.

Proc. AIPS94, Chicago, 1., June

